Charm Physics at BESIII experiments

Bai-Cian Ke IHEP

Outline

Introduction

- Important variables
- D^0 , D^+ , D_s , and Λ_c^+ Dataset
- DTag (Λ_c Tag) and Branching Fraction

Branching Fraction Measurement

- D→omega π , hadronic and semileptonic decays of Λ_c , etc.
- Amplitude Analysis
 - D→K⁻π⁺π⁺π⁻, K_Sπ⁺π⁺π⁻, K⁻π⁺π⁰π⁰, π⁺π⁰η, etc.

• Summary

Beijing Electron Positron Collider (BEPCII) New Two-Ring Machine

BESIII Detector

Physics of D and Λ_c

As the lightest and most common meson (baryon) containing a single charm quark, D (Λ_c) can only decay through the weak interaction and plays a key role in our understanding of charm quarks.

Beam constrained Mass (M_{bc})

$$\begin{split} M_{bc} &\equiv \sqrt{E_{beam}^2 - \left(\sum_i \vec{p_i}\right)^2} = \sqrt{E_{beam}^2 - p_D^2} \\ \delta M_{bc} &\equiv \frac{E_{beam}}{M_{bc}} \delta E_{beam} \oplus \frac{p_D}{M_{bc}} \delta p_D \\ \vec{p_i} : \text{measured momentum of daughter particle} \\ p_D : \text{measured momentum of D meson} \end{split}$$

M_{bc} peaks at D meson mass: momentum conservation

Note:
$$\frac{p_D}{M_{bc}} = \frac{1}{7} \frac{E_{beam}}{M_{bc}}$$

Most uncertainty comes from beam energy smearing.

Energy difference (ΔE)

$\Delta E = E_D - E_{beam}$

$\delta \Delta E = \delta E_D \oplus \delta E_{beam}$

 E_D : measured energy of D meson

ΔE peaks at zero: energy conservation

BESIII Data Taken near the Pair Threshold

- BEPCII collider: $e^+e^- \rightarrow \psi(3770) \rightarrow DD^{bar}$
- 2.9 fb⁻¹ dataset at $\psi(3770)$ resonance

 M_{D0} = 1864.84 MeV M_{D+} = 1869.62 MeV

2M_{D0}= 3729.68 MeV 2M_{D+}= 3739.24 MeV

- New 3.19 fb⁻¹ dataset at $E_{cm} = 4.178 GeV$
 - D_s are produced mostly via $e^+e^- \rightarrow D_s D_s^*$
- 567 pb⁻¹ dataset at $E_{cm} = 4.599 GeV$
 - 26 MeV above the $\Lambda_{c^+} \Lambda_{c^-}$ pair mass
- Advantages of particle pair production near threshold
 - The events are clean; not enough energy for even one additional pion
 - Tagging reduces background from light-quark "continuum" and other charm final states
 - Double tag technique can provide access to absolute BFs
 - Many systematic uncertainties cancel with tag technique

DTag Technique

- There are two types of samples used in the Dtag technique: single tag (ST) and double tag (DT).
- Single tag: only one D meson is reconstructed through a chosen hadronic decay.
- Double tag: both D and \overline{D} are reconstructed,
 - the D reconstructed through the studied hadronic decay is called "the signal side"
 - the D reconstructed through well-known and clean hadronic decay modes is called "the tag side".
- (Charge-conjugate states are implied throughout this talk.)

Branching Fraction and Tagging

• Single tag (ST)

$$N_{\rm tag}^{\rm ST} = 2N_{D^0\bar{D}^0}\mathcal{B}_{\rm tag}\varepsilon_{\rm tag}$$

- Double tag (DT)
 - $N_{\rm tag,sig}^{\rm DT} = 2N_{D^0\bar{D}^0}\mathcal{B}_{\rm tag}\mathcal{B}_{\rm sig}\varepsilon_{\rm tag,sig}$

 $\varepsilon_{\mathrm{tag,sig}} \approx \varepsilon_{\mathrm{tag}} \varepsilon_{\mathrm{sig}}$ (factorization)

where $N_{D^0\bar{D}^0}$ is the total number of produced $D^0\bar{D}^0$ pairs, $\mathcal{B}_{\text{tag(sig)}}$ is the branching fraction of the tag (signal) side, and the ε are the corresponding efficiencies.

$$\blacktriangleright \mathcal{B}_{\text{sig}} = \frac{N_{\text{tag,sig}}^{\text{DT}}}{N_{\text{tag}}^{\text{ST}}} \frac{\varepsilon_{\text{tag}}}{\varepsilon_{\text{tag,sig}}}$$

 $N_{D^0\bar{D}^0}$, \mathcal{B}_{tag} are canceled. ε_{tag} is approximately canceled due to factorization

This is the basic idea for branching fraction. Equations used in analysis vary case by case.

Observation of the Singly Cabibbo-Suppressed Decay $D^+ \rightarrow \omega \pi^+$ and Evidence for $D^0 \rightarrow \omega \pi^0$

Chose six (five) decay modes for $D^{+(0)}$.

In order to have a better solution for $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ background, DT samples $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes are reconstructed first. Then fits to $\pi^+\pi^-\pi^0$ mass are performed.

Note that we are searching for $\omega \rightarrow \pi^+\pi^-\pi^0$.

$$\mathcal{B}_{\rm sig} = \frac{\sum_{\alpha} N_{\rm sig}^{\rm obs,\alpha}}{\sum_{\alpha} N_{\rm tag}^{\rm obs,\alpha} \epsilon_{\rm tag,sig}^{\alpha} / \epsilon_{\rm tag}^{\alpha}}$$

FIG. 1. $M_{\rm BC}$ distributions of ST samples for different tag modes. The first two rows show charged *D* decays: (a) $K^+\pi^-\pi^-$, (b) $K^+\pi^-\pi^-\pi^0$, (c) $K_S^0\pi^-$, (d) $K_S^0\pi^-\pi^0$, (e) $K_S^0\pi^+\pi^-\pi^-$, (f) $K^+K^-\pi^-$, the latter two rows show neutral *D* decays: (g) $K^+\pi^-$, (h) $K^+\pi^-\pi^0$, (i) $K^+\pi^-\pi^+\pi^-$, (j) $K^+\pi^-\pi^0\pi^0$, (k) $K^+\pi^-\pi^+\pi^-\pi^0$. Data are shown as points, the (red) solid lines are the total fits and the (blue) dashed lines are the background shapes. *D* and \overline{D} candidates are combined.

DT $D^{+(0)} \rightarrow \pi^+\pi^-\pi^0\pi^{+(0)}$ vs. tag modes

Fits to $M3\pi$ distributions of signal and sideband regions to obtain the signal and peaking background yields, respectively.

Events counts in sidebands are projected into the signal region with scale factors.

ModeH	$N_{\omega(\eta)}$	$N^{ m bkg}_{\omega(\eta)}$	$N_{ m sig}^{ m obs}$
$D^+ \rightarrow \omega \pi^+$	100 ± 16	21 ± 4	79 ± 16
$D^0 \to \omega \pi^0$	50 ± 12	5 ± 5	45 ± 13
$D^+ \rightarrow \eta \pi^+$	264 ± 17	6 ± 2	258 ± 18
$D^0 o \eta \pi^0$	78 ± 10	3 ± 2	75 ± 10

Mode	This work	Previous measurements
$D^+ \rightarrow \omega \pi^+$	$(2.79\pm0.57\pm0.16)\times10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.
$D^0 \rightarrow \omega \pi^0$	$(1.17\pm0.34\pm0.07)\times10^{-4}$	$< 2.6 \times 10^{-4}$ at 90% C.L.
$D^+ \rightarrow \eta \pi^+$	$(3.07\pm0.22\pm0.13)\times10^{-3}$	$(3.53\pm0.21)\times10^{-3}$
$D^0 \rightarrow \eta \pi^0$	$(0.65\!\pm\!0.09\!\pm\!0.04)\!\times\!10^{-3}$	$(0.68\pm0.07)\times10^{-3}$

PRL 116, 082001 (2016)

Absolute Hadronic BFs of Λ_c^+ Baryon

- Fit to the ST $\rm M_{_{BC}}$ distributions in data for the twelve decay modes
- Use signal MC shape with Gaussian convolution, plus Argus background

Mode	N ST
pK_S^0	1243 ± 37
$pK^-\pi^+$	6308 ± 88
$pK_S^0\pi^0$	558 ± 33
$pK_S^{ar{0}}\pi^+\pi^-$	485 ± 29
$pK^{-}\pi^{+}\pi^{0}$	1849 ± 71
$\Lambda\pi^+$	706 ± 27
$\Lambda \pi^+ \pi^0$	1497 ± 52
$\Lambda \pi^+ \pi^- \pi^+$	609 ± 31
$\Sigma^0 \pi^+$	522 ± 27
$\Sigma^{+}\pi^{0}$	309 ± 24
$\Sigma^{+}\pi^{+}\pi^{-}$	1156 ± 49
$\Sigma^+ \omega$	157 ± 22

 $N_j^{\mathrm{ST}} = N_{\Lambda_c^+ \bar{\Lambda}_c^-} \mathcal{B}_j \varepsilon_j$

Absolute Hadronic BFs of Λ_c^+ Baryon

- BFs obtained from a simultaneous fit to ST, DT rates:
- Results in higher precision since "tag" mode in a given DT combination are also used as "signal"

Absolute Hadronic BFs of Λ_c^+ Baryon

Mode	This work (%)	PDG (%)	BELLE B
pK_{g}^{0}	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30	
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50	
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35	
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0	
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28	
$\Lambda\pi^+\pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3	
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7	
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28	
$\Sigma^+ \pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34	
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0	
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0	

- We report the first absolute measurement of the $\Lambda_c^{\ +}$ decay branching fractions at the $\Lambda_c^{\ +}\overline{\Lambda}_c^{\ -}$ production threshold
- The precision is improved significantly, compared to PDG values

Phys. Rev. Lett. 116 (2016) 052001

Measurement of the Absolute BF for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

• 11 ST modes are used

(Had. BF analysis STs, w/o $\Sigma^+ \omega$)

- Identify p, π⁻ (from Λ) and e⁺ among the remaining tracks
- The neutrino is not detected

A variable, U_{miss} , which peaks at 0 if only a neutrino is missing, is used to obtain the yield

• U_{miss} is similar to missing mass squared

$$U_{\rm miss} = E_{\rm miss} - |\vec{p}_{\rm miss}|$$
$$M_{\rm miss}^2 = E_{\rm miss}^2 - |\vec{p}_{\rm miss}|^2$$

Measurement of the Absolute BF for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

Fit to the U_{miss} distribution to obtain the yield

 $B(\Lambda_{c}^{+} \rightarrow \Lambda e^{+}\nu_{e}) = (3.63 \pm 0.38(stat) \pm 0.20(syst))\%$

The first absolute measurement, and improved precision!

Phys. Rev. Lett. 115 (2015) 221805

Measurement of the absolute branching fraction of the inclusive semileptonic Λ_c^+ decay

 $\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = \frac{N^{\rm pro}(p_e > 200 \text{ MeV}/c)}{N_{\rm tag}[1 - f(p_e < 200 \text{ MeV}/c)]}$

- Detailed study of the PID efficiency to evaluate sizable back-grounds from misidentified hadrons
- The wrong-sign samples, where the charge of the track is required to be equal to that of the ST candidate, are studied to remove secondary positrons arising from γ conversions and π⁰ decays.

$$\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (3.95 \pm 0.34 \pm 0.09)\%$$

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e)} = (91.9 \pm 12.5 \pm 5.4)\%$$

$$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\Gamma(D \to X e^+ \nu_e)} = 1.26 \pm 0.12$$

Phys.Rev.Lett. 121 (2018) 251801

Single tag

Measurements of pure W-annihilation decays in Ds+

This measurement of implies the ρ - ω mixing is negligible.

Amplitude Analysis of Κπππ

•There are seven $D \to K \pi \pi \pi$ modes:

- $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ (published on PRD) PhysRevD.95.072010
- $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (expected to publish on PRD soon)
- $D^0 {\rightarrow} \ K_S \pi^0 \pi^0 \pi^0$
- $D^0 \rightarrow K_S \pi^+ \pi^- \pi^0$ (on-going)
- $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ (on-going)
- $D^+ \rightarrow K_S \pi^+ \pi^0 \pi^0$ (on-going)
- $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$ (expected to publish on PRD soon)
- Four-body decays are in five-dimensions

•We have

- Partial Wave Analysis Tools based on CPU and GPU kernel
- Great Electro-Magnetic Calorimeter (EMC) with Csl
 - \rightarrow superior resolution and efficiency of π^0
- Largest dataset at $\psi(3770)$ resonance
 - \rightarrow small statistical errors and clean background

Amplitude Analysis of Kπππ

• The measurement of the sub-modes in D \rightarrow K $\pi\pi\pi$ provides a window to study the decays D \rightarrow AP and D \rightarrow VV (A=axial-vector, V=vector),

both of them are important in learning the CPV in charm decays but less effective experimental measurements.

- The knowledge of sub-modes can be widely used in many measurements:
 - Branching fraction measurement
 - Strong phase measurement
 - CKM unitary triangle measurement

Partial Wave Analysis

where p_j is the daughter particles' four momenta and $\underline{a_i}$ is the complex coefficient for amplitude modes. $\epsilon(p_j)$ is the efficiency parameterized in terms of the daughter particles' four momenta. R_4 is the 4-body phase space

$$A_i(p_j) = P_i^1(p_j) P_i^2(p_j) S_i(p_j) F_i^1(p_j) F_i^2(p_j) F_i^D(p_j)$$

where $F_i^D(p_j)$ is the Blatt-Weisskopf Barrier factor for D meson. $P_i^{1,2}(p_j)$ and $F_i^{1,2}(p_j)$ is the propagator and the Blatt-Weisskopf Barrier factor, respectively, of the two resonance states for the quasi-two-body type or of the first and the second resonance states for the cascade type. $S_i(p_j)$ is the spin factor. Finally, the likelihood can be defined as

For n events
$$\prod_{j=1}^{n} S(a_i, p_j)$$

Define the likelihood $L = \prod_{j=1}^{n} S(a_i, p_j)$

Partial Wave Analysis Ind

Independent of a_i

$$\ln L = \sum_{j}^{N_{selected}} \ln \left(\frac{|A(a_i, p_j)|^2 R_4(p_j)}{\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j} \right) + \sum_{j}^{N_{selected}} \ln \epsilon(p_j)$$
$$\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j \approx \frac{1}{N_{generated}} \sum_{j}^{N_{selected}} |A(a_i, p_j)|^2$$

Phase space MC sample can be used to deal with the MC integration. We replace phase space MC sample by signal MC sample for better precision.

$$\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j \approx \frac{1}{N_{MC}} \sum_{j}^{N_{MC}} \frac{|A(a_i, p_j)|^2}{|A(a_i^{gen}, p_j)|^2}$$

We further consider the effects of detector efficiency difference between data and MC simulation for pi0 reconstruction, PID, and tracking

$$\int \epsilon(p_j) |A(a_i, p_j)|^2 R_4(p_j) dp_j \approx \frac{1}{N_{MC}} \sum_{j}^{N_{MC}} \frac{|A(a_i, p_j)|^2 \gamma_\epsilon(p_j)}{|A(a_i^{gen}, p_j)|^2}$$

where
$$\gamma_{\epsilon}(p_j) = \prod_j \frac{\epsilon_{j,\text{data}}(p_j)}{\epsilon_{j,\text{MC}}(p_j)}$$

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Double tag $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$ vs. $\overline{D}^0 \rightarrow K^+\pi^-$ The number of event selected is 15912 with a purity of 99.4% The data can be described with 23 amplitudes:

Amplitude	ϕ_i	Fit fraction $(\%)$
$D^0[S] \to \bar{K}^* \rho^0$	$2.35 \pm 0.06 \pm 0.18$	$6.5\pm0.5\pm0.8$
$D^0[P] \to \bar{K}^* \rho^0$	$-2.25 \pm 0.08 \pm 0.15$	$2.3\pm0.2\pm0.1$
$D^0[D] \to \bar{K}^* \rho^0$	$2.49 \pm 0.06 \pm 0.11$	$7.9\pm0.4\pm0.7$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[S] \to \rho^0 \pi^+$	0(fixed)	$53.2 \pm 2.8 \pm 4.0$
$D^0 \to K^- a_1^+(1260), a_1^+(1260)[D] \to \rho^0 \pi^+$	$-2.11 \pm 0.15 \pm 0.21$	$0.3\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$	$1.48 \pm 0.21 \pm 0.24$	$0.1\pm0.1\pm0.1$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$	$3.00 \pm 0.09 \pm 0.15$	$0.7\pm0.2\pm0.2$
$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270) \to K^-\rho^0$	$-2.46 \pm 0.06 \pm 0.21$	$3.4\pm0.3\pm0.5$
$D^0 \to (\rho^0 K^-)_{\rm A} \pi^+, (\rho^0 K^-)_{\rm A} [D] \to K^- \rho^0$	$-0.43 \pm 0.09 \pm 0.12$	$1.1\pm0.2\pm0.3$
$D^0 \to (K^- \rho^0)_{\rm P} \pi^+$	$-0.14 \pm 0.11 \pm 0.10$	$7.4\pm1.6\pm5.7$
$D^0 \rightarrow (K^- \pi^+)_{\rm S} \rho^0$	$-2.45 \pm 0.19 \pm 0.47$	$2.0\pm0.7\pm1.9$
$D^0 \rightarrow (K^- \rho^0)_V \pi^+$	$-1.34 \pm 0.12 \pm 0.09$	$0.4\pm0.1\pm0.1$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm P}\pi^+$	$-2.09 \pm 0.12 \pm 0.22$	$2.4\pm0.5\pm0.5$
$D^0 \to \bar{K}^{*0} (\pi^+ \pi^-)_{\rm S}$	$-0.17 \pm 0.11 \pm 0.12$	$2.6\pm0.6\pm0.6$
$D^0 \to (\bar{K}^{*0}\pi^-)_{\rm V}\pi^+$	$-2.13 \pm 0.10 \pm 0.11$	$0.8\pm0.1\pm0.1$
$D^0 \to ((K^- \pi^+)_{\rm S} \pi^-)_{\rm A} \pi^+$	$-1.36 \pm 0.08 \pm 0.37$	$5.6\pm0.9\pm2.7$
$D^0 \to K^-((\pi^+\pi^-)_{\rm S}\pi^+)_{\rm A}$	$-2.23 \pm 0.08 \pm 0.22$	$13.1\pm1.9\pm2.2$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm S}$	$-1.40 \pm 0.04 \pm 0.22$	$16.3\pm0.5\pm0.6$
$D^0[S] \to (K^- \pi^+)_V (\pi^+ \pi^-)_V$	$1.59 \pm 0.13 \pm 0.41$	$5.4\pm1.2\pm1.9$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm V}$	$-0.16 \pm 0.17 \pm 0.43$	$1.9\pm0.6\pm1.2$
$D^0 \to (K^- \pi^+)_{\rm V} (\pi^+ \pi^-)_{\rm S}$	$2.58 \pm 0.08 \pm 0.25$	$2.9\pm0.5\pm1.7$
$D^0 \to (K^- \pi^+)_{\rm T} (\pi^+ \pi^-)_{\rm S}$	$-2.92 \pm 0.14 \pm 0.12$	$0.3\pm0.1\pm0.1$
$D^0 \to (K^- \pi^+)_{\rm S} (\pi^+ \pi^-)_{\rm T}$	$2.45 \pm 0.12 \pm 0.37$	$0.5\pm0.1\pm0.1$

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Projections of invariant mass (a-h) and χ distribution (i)

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$

Results of branching fractions for different components:

Component	Branching fraction (%)	PDG value (%)	
$D^0 \to \bar{K}^{*0} \rho^0$	$0.99 \pm 0.04 \pm 0.04 \pm 0.03$	1.05 ± 0.23	
$D^0 \to K^- a_1^+ (1260)(\rho^0 \pi^+)$	$4.41 \pm 0.22 \pm 0.30 \pm 0.13$	3.6 ± 0.6	
$D^0 \to K_1^-(1270)(\bar{K}^{*0}\pi^-)\pi^+$	$0.07 \pm 0.01 \pm 0.02 \pm 0.00$	0.29 ± 0.03	
$D^0 \to K_1^-(1270)(K^-\rho^0)\pi^+$	$0.27 \pm 0.02 \pm 0.04 \pm 0.01$		
$D^0 \to K^- \pi^+ \rho^0$	$0.68 \pm 0.09 \pm 0.20 \pm 0.02$	0.51 ± 0.23	
$D^0 ightarrow ar{K}^{*0} \pi^+ \pi^-$	$0.57 \pm 0.03 \pm 0.04 \pm 0.02$	0.99 ± 0.23	
$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	$1.77 \pm 0.05 \pm 0.04 \pm 0.05$	1.88 ± 0.26	
S	stat. uncertainty from FF		
	sys. uncertainty from FF		
	uncertainties related to BF($D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$) in PI		

Published in PRD 95, 072010

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Double tag: $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ (signal) vs. $\overline{D}^0 \rightarrow K^+\pi^-$ (tag) The number of event selected is 5950 with a purity of ~99% The data can be described with 26 amplitudes:

Amplitude mode	FF (%)	Phase (ϕ)
$D \rightarrow SS$		
$D \rightarrow (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_S$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$
$\frac{1}{D \to AP, A \to VP}$		
$D \to K^{-a_1}(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0 [S]$	$0.15 \pm 0.09 \pm 0.18$	$1.84 \pm 0.34 \pm 0.43$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.13$	$-1.35 \pm 0.43 \pm 0.48$
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$
$D \to (K^{*-}\pi^{0})_{A}\pi^{+}, K^{*-}\pi^{0}[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$
$D \rightarrow (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$
$\overline{D \to AP, A \to SP}$	BESIIIPreliminar	V
$D \rightarrow ((K^-\pi^+)_{S-\text{wave}}\pi^0)_A \pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$
$D \rightarrow VS$		
$D ightarrow (K^- \pi^0)_{S ext{-wave}} ho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$
$D ightarrow K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$
$D ightarrow K^{*0} (\pi^0 \pi^0)_S$	$0.12 \pm 0.27 \pm 0.27$	$1.45 \pm 0.48 \pm 0.51$
$\overline{D \to VP, V \to VP}$		
$D ightarrow (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$
$D \rightarrow VV$		
$D[S] o K^{*-} ho^+$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$
$D[P] o K^{*-} ho^+$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$
$D[D] ightarrow K^{*-} ho^+$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$
$D[P] ightarrow (K^- \pi^0)_V ho^+$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$
$D[D] ightarrow (K^- \pi^0)_V ho^+$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$
$D[D] ightarrow K^{*-}(\pi^+\pi^0)_V$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$
$D[S] \to (K^- \pi^0)_V (\pi^+ \pi^0)_V$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$
$D \to TS$		
$D ightarrow (K^- \pi^+)_{S ext{-wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.32$	$-2.93 \pm 0.31 \pm 0.82$
$D ightarrow (K^- \pi^0)_{S ext{-wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$

27

Amplitude Analysis Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Branching Fraction Results of $D^0 \rightarrow K^-\pi^+\pi^0\pi^0$

Events / (0.001 GeV /c²) ଜୁ

10

1.83

1.84

Data

Total

Signal

- Background

1.86

M_{BC} (GeV/c²)

(a)DT $(K^-\pi^+\pi^0\pi^0)$

1.87

1.85

The amplitude analysis result is used to determine the detection efficiency, where the DT efficiency is 8.39%

The branching fraction is determined to be

$$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0 \pi^0) = (8.98 \pm 0.13 (\text{stat}) \pm 0.40 (\text{syst}))\%$$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Double tag $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^- vs. D^- \rightarrow K^+ \pi^- \pi^-$ The number of event selected is 4559 with a purity of ~99% The data can be described with 12 amplitudes:

Amplitude	ϕ	fit fraction
$D^+ \to K^0_S a_1(1260)^+, a_1(1260)^+ \to \rho^0 \pi^+[S]$	0.000(fixed)	$0.567 \pm 0.020 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+, a_1(1260)^+ \to f_0(500)\pi^+$	$-2.023 \pm 0.068 \pm 0.113$	$0.050 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[S]$	$-2.714 \pm 0.038 \pm 0.051$	$0.380 \pm 0.013 \pm 0.014$
$D^+ \to \bar{K}_1(1400)^0 \pi^+, \bar{K}_1(1400)^0 \to K^{*-} \pi^+[D]$	$3.431 \pm 0.137 \pm 0.117$	$0.015 \pm 0.004 \pm 0.005$
$D^+ \to \bar{K}_1(1270)^0 \pi^+, \bar{K}_1(1270)^0 \to K^0_S \rho^0[S]$	$-0.418 \pm 0.070 \pm 0.087$	$0.036 \pm 0.004 \pm 0.002$
$D^+ \to \bar{K}(1460)^0 \pi^+, \bar{K}(1460)^0 \to K_S^0 \rho^0$	$-1.850 \pm 0.120 \pm 0.223$	$0.014 \pm 0.004 \pm 0.003$
$D^+ \to (K^0_S \rho^0)_A [D] \pi^+$	$2.328 \pm 0.097 \pm 0.068$	$0.011 \pm 0.003 \pm 0.002$
$D^+ \to K^0_S(\rho^0 \pi^+)_P$	$1.656 \pm 0.083 \pm 0.056$	$0.031 \pm 0.004 \pm 0.010$
$D^+ \to (K^{*-}\pi^+)_A[S]\pi^+$	$-4.321 \pm 0.047 \pm 0.073$	$0.132 \pm 0.011 \pm 0.011$
$D^+ \to (K^{*-}\pi^+)_A[D]\pi^+$	$0.989 \pm 0.158 \pm 0.229$	$0.013 \pm 0.004 \pm 0.004$
$D^+ \to (K^0_S(\pi^+\pi^-)_S)_A\pi^+$	$-2.935 \pm 0.060 \pm 0.125$	$0.051 \pm 0.004 \pm 0.003$
$D^+ \to ((K_S^0 \pi^-)_S \pi^+)_P \pi^+$	$1.864 \pm 0.069 \pm 0.288$	$0.022 \pm 0.003 \pm 0.003$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

Amplitude Analysis of $D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$

The preliminary results of branching fractions for different components :

The measurements of the decays with K1(1270) and K1(1400) involved provide some experimental information in understanding the mixture of the two excited Kaons.

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$ Observation of $D_{S^+} \rightarrow a^0(980)^+\pi^0$

Amplitude Analysis of $D_{S^+} \rightarrow \pi^+\pi^0\eta$

First observation

The measured $\mathcal{B}(D_{S^+} \rightarrow a^0(980) + \pi^0)$ is larger than other measured pure Wannihilation decays ($D_{S^+} \rightarrow pn$, $D_{S^+} \rightarrow w\pi^+$) by one order. This provides theoretical challenge in understanding such a large W-annihilation contribution in $D \rightarrow SP$.

 $\mathcal{B}(D_s^+ \to a_0(980)^0 \pi^+)^* = 1.46 \pm 0.15_{stat.} \pm 0.22_{sys.}$

Summary

- Tag technique and pair threshold data allows us to perform inclusive and exclusive branching fraction measurement
- Double tag provides clean samples for amplitude analysis
- Many charm physics studies have been published, more related measurements are on-going
- More D_s studies are on going based on our new 3.19 fb⁻¹ data at $E_{cm} = 4.178$ GeV
 - K_SK-K_LK asymmetry, amplitude analyses of KKπ, ππeta, πππ, and four-body decays, such as KKππ and πππeta